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A dummy electronic assembly without electronic components was used
to measure loadings and deflections caused by 0.2, 0.3, 0.4, 0.5
and 0.6 g/cm3 densities of polystyrene bead foam during fusion

and thermal cycling. Previously developed and proven transducers
showed that the lower three densities caused low and safe loads
and deflections, but that the highest two densities must be used
with care for fragile electronic components.
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SUMMARY

Polystyrene bead foam (PSBF) is a candidate encapsulant material
for electronic packages. Hence, the types and magnitudes of
thermally-generated mechanical loadings on electronic components
are not known. In addition, previous encapsulant materials have
generally bonded well to most materials, while PSBF has not. The
work reported here uses a dummy electronic assembly without elec-
tronic components to measure loadings and deflections caused by
0.2, 0.3, 0.4, 0.5 and 0.6 g/cm® densities of PSBF during fusion
and thermal cycling.

A variety of proven strain-gage transducers were used to measure
loads and deflections. The quantities measured were the deflection
of printed wiring boards (PWBs) normal to their plane, localized
strain in the plane of PWBs, lateral force parallel to the surface
of a PWB, lateral deflection parallel to the surface of a PWB,

and the thermomechanical pressure on a strain-gaged transistor.
These quantities were judged to have the highest potential for
damaging electronic components in packages encapsulated in PSBF.
PSBF of low densities is flexible enough to eliminate the need

for conformal coatings to protect electronic components required
by more rigid encapsulants. Nearly equally low loadings and
deflections were measured for 0.2 and 0.3 g/cm® PSBF; values for
0.4 g/cm® were intermediate; and densities of 0.5 and 0.6 g/cm?
produced nearly equally high loadings and deflections.

Robust electronic components such as inductors should be safe in
all densities, but care must be used when encapsulating fragile
electronic components like ceramic microcircuits in the highest
two densities, where fairly large crushing pressures can develop.

If PWBs are not rigidly fixed in place by support posts or fixtures,
significant movement can occur during the fusion cycle. Therefore,
all electronic components must be adequately protected from elec-
trical shorting or from change in critical circuit parameters which
may result from such movement. After fusion, essentially no PWB
movement occurs.




DISCUSSION

SCOPE AND PURPOSE

The work reported here is part of an effort to evaluate polysytrene
bead foam (PSBF) as an encapsulant for electronic packages. Experi-
mental data were needed to characterize the various properties of
PSBF with densities from 0.1 to 0.6 g/cm®. The data are needed

to recommend the correct foam density, appropriate bead fusion
conditions, and other critical encapsulation process requirements
necessary to guarantee adequate environmental protection for future
electronic packages which use PSBF as the encapsulant.

All encapsulated electronic packages must withstand the
thermomechanically-caused loads and deflections which act on the
individual electronic components. Using proven transducers, these
loads and deflections were measured. The test vehicle chosen was
a dummy electronic package, the production version of which is a
candidate for PSBF encapsulation.

PRIOR WORK

Physical, mechanical, and chemical properties of structural PSBF
have been reported.! Thermomechanical interactions when encapsulat-
ing a quite different electronic package in 0.2 g/cm® PSBF also
have been reported.? Thumb-tack generalized models of electronic
components have compared loadings on solder joints caused by five
densities of PSBF encapsulation. Also measured was moisture pene-
tration for five densities and several different fusion cycles of
PSBF. Mechanical properties of potting PSBF of five densities

are available. No other work is known which attempts to measure
thermomechanically-caused loads and deflections for electronic
packages encapsulated in a range of densities of PSBF.

ACTIVITY

The test vehicle chosen to measure loads and deflections was a
dummy electronic package with printed wiring boards (PWBs) instal-
led, but without electronic components. Transducers which had
been developed and proven in earlier work were mounted on the PWBs
to simulate electronic components. Data from these transducers
were to be analyzed to predict the severest loading mechanisms

and their magnitudes. Appropriate transducers and locations then
could be chosen for later tests on a production equivalent elec-
tronic package.




[

Experimentation

Five types of proven transducers? were placed in the dummy unit
to measure these five quantities:

1. Deflection of PWBs normal to their plane,

2 Localized strain in the plane of PWBs,

3 Lateral force parallel to the surface of a PWB,

4, Lateral deflection parallel to the surface of a PWB, and
5

The resulting thermomechanical pressure on a strain-gaged
transistor.

These proven transducer types were deemed adequate to survey the
types of loads and deflections expected from encapsulating the
dummy unit in PSBF and from later thermal cycling.

Figures 1 and 2 show the dummy unit and the transducer locations.
Figure 1 is an end view with the cover removed. It shows the
lateral force transducer (F), the lateral deflection transducer
(D), and the four PWB deflection transducers (B;, By, Bz and B,).
B, is attached to the full-height PWB closest to the case, and By
is attached to the fourth full-height PWB. This relation is shown
better in the oblique view of Figure 2 which has the cylindrical
case removed. Here R is one of a matched pair of right-angle strain
gages on the PWB. Another right-angle pair is on the opposite
side of the PWB at the same location. A second set of right-angle
strain gages is mounted at the center of the circular PWB nearest
the bottom plate. The strain-gaged transistor which acts as a
pressure transducer is mounted from the bottom of the same PWB.

After all the transducers were manufactured, instrumented, mounted,
calibrated, and thermal compensated, the unit was filled with

0.2 g/cm® pre-expanded polystyrene beads and the top cover was
clamped in place. The beads then were fused together into PSBF

by being heated for 20 minutes after the center of the unit reached
93°C in an oven set at 102°C. Three thermal cycles were monitored
and the unit was then depotted in air-agitated toluene; the trans-
ducers were rechecked; and the sequence was repeated for the next
highest density. More than three thermal cycles were performed

for higher density PSBF in order to follow progressive changes

from cycle to cycle.

Table 1 lists some specifics of the fusion and thermal cycles.
All fusion was done in an oven preheated to 102°C. Table 1 shows
the total time in the oven and the maximum temperature measured
by any thermocouple inside the unit. The table also lists the
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* Figure 2. Oblique View of Dummy Unit With the
Cover Removed
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minimum and maximum temperatures for each thermal cycle, and the

total duration of that data record. The thermal cycle times from
the start at ambient until the finish at ambient vary for a given
density because the temperature was manually controlled.

Test Results

A large amount of experimental data was accumulated for the several
tests described in Table 1 for each of the transducers shown in
Figures 1 and 2. A total of 260 graphs were prepared from the
computer-reduced data. Some trends were established as direct
results of density change and successive thermal cycles. However,
in many cases, no significant change occurred with successive
thermal cycles; hence, the much smaller number of data plots
exhibited here shows all important aspects of the total data set.

Figure 3 shows the movement of the free ends of the PWBs relative
to the case, as measured by B;, B,, By, and B, during the 0.2 g/cm®
PSBF fusion. As the filled unit heats to the fusion temperature,
the PWBs move and adjust to equilibrate the forces acting on the
two faces. PWBs 1 and 2 move toward the case and PWBs 3 and 4
move away from the case. The PWBs then retrace that motion and
finally reach an equilibrium after the individual beads are fused
into a solid foam, such that PWB 1 is essentially at its original
position and the other three are slightly further from the case.

During the three thermal cycles, only a very slight movement away
from the case occurred at low temperature for each cycle. Upon
heating back to room temperature, each PWB moved back to its posi-
tion after fusion. This behavior was nearly identical for each
successive cycle. The movement at low temperature is caused by
PSBF thermally contracting faster than the case and by the lack
of bonding of the PSBF to the case.

Figure 4 shows the PWB movement during fusion of 0.3 g/cm® PSBF.
The transients are larger as the PWBs move to equilibrate forces.
Again, a very slight cyclical movement occurred for the thermal
cycles, with no significant change from cycle to cycle.

During depotting of the 0.3 g/cm® PSBF, board deflectometers B,
and B, were damaged. Since the delay necessary to repair them
was unacceptably long, the other tests were done with no B; or By
data. B, continued to collect data for all PSBF densities and
showed only one small transient for 0.6 g/cm® density (less than
that seen for B; for fusion of 0.2 g/em®). B; collected data for
0.4 and 0.5 g/cm® densities with only slightly larger negative
excursions than seen in Figure 4 for 0.3 g/cm®. Only very small
cyclical changes in deflection occurred during the thermal cycles,
with almost no change from cycle to cycle, so those data are not
shown here.
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The set of right-angle strain gage rosettes (R) at the center of
the bottom circular PWB and oriented normal to the vertical PWBs
(Strain 1 on Figures 5 through 8) moved only slightly during the
several fusion cycles. Figures 5 and 6 show the results for

0.2 g/cm® and 0.6 g/cm® PSBF fusion cycles, respectively. The

data curves are separated enough in Figure 6 to show the individual
data for top and bottom strain gages and also the reduction into
tension and bending components. The bending component was nearly
zero for the entire fusion cycle. Figure 7 shows only small strain
changes during thermal cycling of 0.2 g/cm® PSBF, but Figure 8
shows very significant strains for 0.6 g/cm® PSBF. These strains
are almost totally compression with very little bending component.
Only a small strain relaxation occurred with successive thermal
cycles of 0.5 and 0.6 g/cm® PSBF. Behavior of these two high
densities was nearly identical.

The other pair of strain gages on the bottom circular PWB was
immediately adjacent to and oriented at right angles to the pair
just discussed. Thus, the gage elements were parallel to the
vertical PWB (Strain 2 on Figures 9 through 12). Almost no strain
occurred for 0.2 and 0.3 g/cm® PSBF fusion or thermal cycles.
Figures 9 and 10 show the response during the 0.4 and 0.6 g/cm®
fusion cycles. Figures 11 and 12 show the strain during the first
thermal cycle of 0.4 and 0.6 g/cm®, respectively. With succeeding
thermal cycles, only a slight relaxation to smaller strain values
and only a small amount of PWB bending strain occurred.

The other PWB strains were measured at R on Figure 2. Strain 3

is across the PWB and Strain 4 is along the length of the PWB.
These strains are generally larger than Strains 1 and 2 on the
bottom circular PWB. And even though some transient bending strain
occurred during the fusion heat-up, almost no bending strain was
seen during the thermal cycles.

Strains were very low for 0.2 and 0.3 g/cm® fusion and thermal
cycles and will not be shown here. Figures 13 and 14 show Strain 3
for 0.4 and 0.6 g/cm® fusion. Figure 15 shows Strain 3 during

0.4 g/cm® thermal cycle 1. Figures 16 and 17 show Strain 3 during
0.6 g/cm® thermal cycles 1 and 7. A significant strain relaxation
occurred during the thermal cycles. Data for 0.5 g/cm® were very
similar to those for 0.6 g/cm®. Data for Strain 4 were very similar
to those for Strain 3. Little strain resulted in 0.2 and 0.3 g/cm®
fusion on thermal cycles. Figures 18 and 19 show Strain 4 during
0.4 and 0.6 g/cm® fusion, Figure 20 for 0.4 g/cm® thermal cycle 1,
and Figures 21 and 22 for 0.6 g/cm® thermal cycles 1 and 7. Again,
0.5 g/cm3 behavior was very similar to that of 0.6 g/cm®. Also,
most of the relaxation takes place between thermal cycles 1 and 2,
but a slight additional relaxation was still occurring when cycling
was stopped.

Text Continued on p. 36
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Reliable data on the response of the lateral force transducer, F,
(Figures 1 and 2) were acquired only for 0.2 and 0.3 g/cm® PSBF.
After all testing, this transducer was found to be filled with
solid polystyrene, and thus not free to move. A close analysis
of the data indicated that the problem first occurred following
the depotting of 0.3 g/cm® PSBF. .

Figures 23 and 24 show the force during 0.2 and 0.3 g/cm® PSBF
fusion. In both cases, the downward force resulting from filling
the unit relaxes during the fusion cycle. Figures 25 and 26 show
the first thermal cycle for 0.2 and 0.3 g/cm® PSBF, respectively.
Only minor changes in the peak height and detail occurred with
later thermal cycles. The force direction is downward for all
temperatures, except occasionally for the very low force levels.

The lateral deflection transducer D (Figures 1 and 2) also gave
reliable data for only the first two PSBF densities. Very little
change occurred in going from 0.2 to 0.3 g/cm® PSBF for the fusion
cycles (Figures 27 and 28). The deflection caused by filling the
unit with polystyrene beads is quickly relaxed during heat-up to
the fusion temperature. Figure 29 shows the deflection for

0.2 g/cm® thermal cycle 1, and is nearly identical to all thermal
cycles for both densities. All deflections are downward for fusion
and thermal cycles.

Figures 30 to 32 show the pressure transducer data for fusion of
0.2, 0.4, and 0.6 g/cm® PSBF. This transducer was made from a
strain-gaged transistor and was mounted between the bottom circular
PWB and the metal base. The first thermal cycle data are exhibited
in Figures 33 to 35.

Successively larger pressure changes do occur for higher PSBF den-
sities. Also, transient pressure "spikes" occur at the beginning

of each large temperature change. Their direction toward positive
pressure corresponds to a pulling outward of the top of the tran-
sistor can and appears as such regardless of whether the temperature
is increasing or decreasing. The reason for these transients is

not yet understood. Some thermal ratcheting toward larger magnitude
inward-directed pressure does occur with successive thermal cycles
(as shown by Figure 36 for 0.6 g/cm® PSBF thermal cycle 7, when
compared to Figure 35).

Discussion of Results

The data previously mentioned may be interpreted by considering

the mechanisms involved during the fusion and thermal cycles.

When the unit is poured full of pre-expanded individual polystyrene
beads and heated, the beads expand and are fused to each other to
form a solid foam throughout the interior of the unit. However,
during heat-up, the beads move around to accommodate the forces
from filling and from mismatch of coefficient of thermal expansion

Text Continued on p. 51
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of the container, PWBs, transducers, and other interior items.
Such relaxation occurs for the lateral force and deflection pre-
viously mentioned. Because the fused PSBF is soft, loads at the
end of the fusion cycle are very low. The unit then is cooled to
ambient and the PSBF elastic modulus rapidly increases. The mis-
match of coefficient of thermal expansion then generates loads
and deflections. Thus, most experimental data are not zero at
ambient after fusion.

The unit never gets as hot during the thermal cycles as it does
during the fusion cycle, so the PSBF always has significant stiff-
ness. At the lowest temperature, the thermal mismatch is greatest,
so the loadings and deflections should be greatest. Most of the
experimental data verified this.

I1f the combination of thermal mismatch and temperature change is
great enough, progressive relaxation or thermal ratcheting can
occur. This ratcheting is caused by nonrecoverable deformation

by at least one material in a closed action-reaction load loop.
For example, the PSBF could yield or crack at low temperature.

In an actual production unit, a solder joint could yield or a com-
ponent lead could bend beyond the elastic limit. Behavior during
the next thermal cycle will then be different. Such thermal cycle
changes are seen for Strains 3 and 4 and the pressure data pre-
viously presented.

In general, as the density of the PSBF increases, so do the elastic
modulus and the tensile and compressive strengths. For a given
density of PSBF, the values of these three properties increase as
the temperature decreases. These two factor conspire to produce
the severest loadings for the highest density PSBF at the lowest
temperature of the thermal cycle. This is qualitatively true for
the PWB strains and pressure data.

Large loadings also can be expected when the temperature is changing
rapidly during heat-up of the fusion cycle or starting from one
equilibrium temperature to another during thermal cycling. The

unit is then in a transient thermal state with transient forces

and deflections. Such effects are sensitive to both direction

and position. Hence, PWB deflection shows transient movement

during heat-up to the fusion temperature in Figures 3 and 4. The
pressure transducer shows transient "spikes" during thermal cycles
in Figures 33 through 36.

The influence of adjacent items to a given transducer which may

act as restraints or "pinning points" for the encapsulant PSBF
should be considered. The items' size, shape; and proximity are

all important. Such restraints may change the magnitude or direc-
tion of a force, which is partly the reason for seeing some positive
pressures. These pressures correspond to pulling the end of the
transducer outward, an unexpected direction for PSBF, which bonds
poorly to nearly all materials.
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The study of Reference 3 showed similar results for a much dif-
ferent encapsulation unit geometry. Indeed, the response to a
thermal cycle in that experiment yielded positive pressures at

low temperatures and low or negative pressures at high temperatures.
The magnitude of change for a thermal cycle was also larger than
in this case, and no transient effects were seen. The earlier
transducer faced downward from a PWB toward about 2.5 cm of PSBF
and had a deflectometer housing beside it. The transducer in this
test series faced parallel to the bottom PWB and toward about 5 cm
of PSBF, but had the bottom PWB and the metal base within about

1 mm of the sides.

Conclusions

PWB deflection is not a problem. A little movement occurs after
the initial accommodation during heat-up to the fusion temperature;
however, since significant initial accommodation does occur, the
interboard electrical insulating sheets must be included in pro-
duction units. For other assemblies, rigid PWB spacers may be
required.

For the locations measured, PWB strains should be safe for nearly
all mounted components for all PSBF densities because all bending
strains were small. Bending strains are most easily transmitted

to mounted components and are a very severe condition for components
like ceramic core resistors or ceramic case microcircuits.

PSBF of 0.2 and 0.3 g/cm® density should be safe for nearly all
electronic components under the thermomechanical loadings produced
here. Safe, although higher, loadings will occur for 0.4 g/cm?
PSBF. Nearly identical severe loadings result for 0.5 and

0.6 g/cm3 PSBF. These high densities may be able to crush some
sensitive ceramic microcircuit covers or cause yielding and perma-
nent inward "dishing" of metal transistor cans or microcircuit
covers.

The most severe sideward loadings occur while filling the unit
and clamping the cover shut. These are relaxed to near zero during
fusion.

The most severe positive (or outward) pressure loadings occur during
the first thermal cycle. Succeeding thermal cycles remain the

same or thermally ratchet to more severe negative or inward pres-
sure loadings. Components which survive the first thermal cycle

can be crushed in later thermal cycles.

Recommendations

Two general recommendations for PSBF encapsulation of electronic
assemblies can be made, based on the results of this study. The
first is that 0.2 to 0.4 g/cm® PSBF may be safely used for all
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except the most fragile electronic components, but that 0.5 to

0.6 g/cm® PSBF should be used with care because of crushing pres-
sures which can develop. The second recommendation is that since
PWB movement can occur during the fusion cycle, insulating spacers
should be used to prevent electrical shorts and rigid PWB spacers
should be used to prevent change in any critical electrical circuit
operating parameters.

ACCOMPLISHMENTS

An experimental survey of several types of loads and deflections
caused by encapsulation in 0.2, 0.3, 0.4, 0.5 and 0.6 g/cmd
densities of PSBF has been made using a dummy electronic unit.

The three lowest densities were found to be safe against thermo-
mechanical stresses for all but the most fragile electronic
components. The two highest densities must be used with more care.
Also, adequate care must be exercised to prevent electrical shorts
or change in electrical circuit operating parameters which can be
caused by PWB movement during the PSBF fusion cycle.

FUTURE WORK

Work is already under way to determine failure criteria for micro-
circuits used in the production version of the dummy unit studied
here. Other work in progress will collect experimental data on
loads and deflections in such a production unit. Shock and vibra-
tion response also will be measured for that unit.
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